Circadian rhythms in myocardial metabolism and contractile function: influence of workload and oleate.
نویسندگان
چکیده
Multiple extracardiac stimuli, such as workload and circulating nutrients (e.g., fatty acids), known to influence myocardial metabolism and contractile function exhibit marked circadian rhythms. The aim of the present study was to investigate whether the rat heart exhibits circadian rhythms in its responsiveness to changes in workload and/or fatty acid (oleate) availability. Thus, hearts were isolated from male Wistar rats (housed during a 12:12-h light-dark cycle: lights on at 9 AM) at 9 AM, 3 PM, 9 PM, and 3 AM and perfused in the working mode ex vivo with 5 mM glucose plus either 0.4 or 0.8 mM oleate. Following 20-min perfusion at normal workload (i.e., 100 cm H(2)O afterload), hearts were challenged with increased workload (140 cm H(2)O afterload plus 1 microM epinephrine). In the presence of 0.4 mM oleate, myocardial metabolism exhibited a marked circadian rhythm, with decreased rates of glucose oxidation, increased rates of lactate release, decreased glycogenolysis capacity, and increased channeling of oleate into nonoxidative pathways during the light phase. Rat hearts also exhibited a modest circadian rhythm in responsiveness to the workload challenge when perfused in the presence of 0.4 mM oleate, with increased myocardial oxygen consumption at the dark-to-light phase transition. However, rat hearts perfused in the presence of 0.8 mM oleate exhibited a markedly blunted contractile function response to the workload challenge during the light phase. In conclusion, these studies expose marked circadian rhythmicities in myocardial oxidative and nonoxidative metabolism as well as responsiveness of the rat heart to changes in workload and fatty acid availability.
منابع مشابه
Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression.
Virtually every mammalian cell, including cardiomyocytes, possesses an intrinsic circadian clock. The role of this transcriptionally based molecular mechanism in cardiovascular biology is poorly understood. We hypothesized that the circadian clock within the cardiomyocyte influences diurnal variations in myocardial biology. We, therefore, generated a cardiomyocyte-specific circadian clock mutan...
متن کاملInfluence of N-Phthaloyl GABA on the Circadian Rhythms of Lipid Peroxidation and Antioxidants in Wistar Rats under Constant Light
N-Phthaloyl GABA was administrated daily (50 mg/Kg body weight-i.p) to Wistar rats for 21 days and circadian rhythms of thiobarbituric acid reactive substances (TBARS) and antioxidants such as reduced glutathione (GSH), catalase (CAT) and superoxide dismutase (SOD) were studied under constant light (LL) conditions. Delayed acrophase of TBARS and advanced acrophase of antioxidants (GSH, CAT and ...
متن کاملDiurnal variations in myocardial metabolism.
The heart is challenged by a plethora of extracellular stimuli over the course of a normal day, each of which distinctly influences myocardial contractile function. It is therefore not surprising that myocardial metabolism also oscillates in a time-of-day dependent manner. What is becoming increasingly apparent is that the heart exhibits diurnal variations in its intrinsic properties, including...
متن کاملCircadian rhythms and cardiovascular disease
Diurnal variations in the myocardium have been described at several levels, including gene expression, cellular signaling, metabolism, contractile function, and dysfunction. Regarding myocardial metabolism, carbohydrate, fatty acid, amino acid/protein, and coenzyme metabolism have all been shown to oscillate in the heart in a manner dependent on the time of day. The purpose of this review is to...
متن کاملAnticipating anticipation: pursuing identification of cardiomyocyte circadian clock function.
Diurnal rhythms in myocardial physiology (e.g., metabolism, contractile function) and pathophyiology (e.g., sudden cardiac death) are well establish and have classically been ascribed to time-of-day-dependent alterations in the neurohumoral milieu. Existence of an intramyocellular circadian clock has recently been exposed. Circadian clocks enable the cell to anticipate environmental stimuli, fa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 293 4 شماره
صفحات -
تاریخ انتشار 2007